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The cross-section of an absorbing crystal is divided into a mosaic, each area of which is tmiquely 
defined by the faces through which pass the rays that  are incident on and diffracted from that  area. 
For strongly absorbing media only a few of these areas on the surface contribute significantly to the 
transmission factor; the remaining regions are assumed to give approximately null contribution. 
The contribution of each area is defined as an equivalent diffracting area (e.d.a.). The e.d.a, of each 
surface area is easy to compute and has a simple physical interpretation related to the locus of 
constant path-length for which /~l = 1. A vectorial representation of the cross-sectional profile 
facilitates selection of the appropriate e.d.a, formulae, and makes the whole calculation equally 
convenient for evaluation graphically or by a computer. Extension of the procedure to crystals in 
three dimensions is also considered. 

I n t r o d u c t i o n  

Methods of evaluat ing absorption corrections fall into 
three main  groups: 

(1) Tabular  or simple analyt ical  procedures ap- 
plicable to spherical, ellipsoidal or cylindrical  crystals 
or to certain s imply  shaped polyhedra,  slabs, etc. 
(Bradley, 1935; Evans,  1952 ; Evans  & Ekstein,  1952 ; 
Frasson, 1958; Frasson & Bezzi, 1958, 1959; Bond, 
1959; Fitzwater ,  1961). 

(2) Sampling methods,  applicable only to crystals 
of low or medium absorption. A n y  cross-section can 
be tackled graphical ly  (Albrecht, 1939; Joel, Vera & 
Garaycochea, 1953; Rogers & Moffett, 1956; Henshaw, 
1958; Frasson, 1958; Frasson & Bezzi, 1958, 1959), 
but  a computer  can only convenient ly  cope with 
polyhedra  (Busing & Levy, 1957; Wells, 1960). 

(3) Block mosaic methods,  which are applicable 
to any  polygonal cross-section but  are par t icular ly  
convenient  for s trongly absorbing specimens. The 
methods described by  Hendershot  (1937), I-Iowells 
(1950), Carazzolo & l~ammi  (1956) and Grdenid 
(1949, 1952, 1956) look at  first sight as though the 
graphical  procedure needed for each reflexion is so 
individual is t ic  as to make it  impract icable  to trans- 
fer i t  to a computer.  I t  has been shown, however 
(Ferrari, Bra ibant i  & Tiripicchio, 1961, 1963) how the 
procedure for square or rectangular  profiles could be 
systematized.  This paper  extends tha t  s tudy  to 
present  a general t r ea tment  for prisms of uniform 
convex polygonal cross-section and outlines its ex- 
tension to crystals of any  shape with no reent rant  
angles. 

P r e l i m i n a r y  c o n s i d e r a t i o n s  

The t ransmission factor is usual ly  defined as the 
dimensionless quan t i ty  

A ~ = ~  e x p ( - # l ) d ~ ,  
T 

where T represents either a volume or area. I t  can 
be thought  of as the ratio between the equivalent 
diffracting volume (e.d.v.) or area (e.d.a.), 

Te = I exp ( - #l) d T 
, )  T 

and the total  volume or area T. When  absorpt ion is 
high and much  of the interior of the crystal  is screened 
from the radia t ion the e.d.a, will be shown to have 
a simple physical  in terpre ta t ion and  correspondingly 
simple formulae. 

In  view of the fact tha t  each reflexion is recorded 
twice (e.g. in the Weissenberg camera once in the upper  
and again in the lower par t  of the photograph (Fig. 
l(a), (b)), we must  be able to specify the  orientat ion 
of the crystal  with respect to the camera. This can 
be done by  reference to an  orthogonal set of right- 
handed  axes defined by  a 'reference plane '  of the 
crystal  and some axis in the X-ray  equipment .  
To be explicit, the 'reference plane '  can be either 
an external  face or a readi ly identif iable latt ice plane. 
The z axis is t aken  parallel  to the rotat ion axis of 
the crystal,  posit ively away from the goniometer head. 
The 'reference face' or plane must  be parallel  to z, 
and x positive is t aken  along its outward face-normal;  
y is then  defined by  the r ight -handed system (see 
Fig. 1). In  this  sys tem of axes the angles are measured 
positive if anticlockwise when looking along + z  
toward 0; in a more general s ta tement  they  are 
considered positive in the  sense x--> y, y - ~  z and  
X --> Z.  

As shown in Fig. l(a),  (b), (c), (d), we mus t  preserve 
a clear dis t inct ion between a lef t -handed or anti- 
clockwise deflection (20 positive) corresponding to 



46 C A L C U L A T I O N  O F  T R A N S M I S S I O N  F A C T O R S  I N  C R Y S T A L S  

i 
I M.I N 

i  2[[.l"diffractcd beam 

I ' 

i 
~ , ~  rotation axis 1 /  

' I i 
' I 

, t  O 

, 

] [ _ - - ~ d i f f r a c t e d  beam 

rotation axis / 1 )  

(c) 

I 
/ 

(b} (d) 
Fig. 1. Posi t ion of the  crystal  in a Weissenberg camera:  (a), (b) Lef t -hand deflection. (c), (d) R igh t -hand  deflection. 

spots recorded on the upper part  of the photograph 
and a right-handed or clockwise deflection (20 nega- 
tive) corresponding to spots recorded on the lower 
part of the photograph. 

Vectorial r e p r e s e n t a t i o n  

The unit vectors i and d (Fig. 2) denote the actual 
directions of the incident and diffracted rays and the 
unit vectors - i  and - d  the opposite directions. 
Then, for a left-handed deflection (Fig. 2(a)), the 
unit vector thk0 = --(i + d)/2 cos 0 represents the retic- 
ular plane hkO, the unit vector nhko=(d--i)/2 sin 0 
represents the normal to the reticular plane hkO; 
for the reference plane, these vectors are called 
to and no and correspond to the + y  and + x  direc- 

tions respectively. For a right-handed deflection 
(Fig. 2(b)), the plane hk0 is defined by the unit vector 
t~k0= (i+d)/2 cos 0 and its normal by the unit vector 
nhk0 = (d--i)/2 sin 0; for the reference plane to and no 
are again the + y  and + x directions respe0tively, 

The contour of the cross-section of the crystal can 
also be defined by vectors. Consider the polygonal 
cross-section shown in Fig. 3(a). To agree with the 
convention of measuring angles positive if anti- 
clockwise, we number the corners consecutively, Pj, 
in an anticloekwise sense, starting from corner P1. 

- - - - >  

The consecutive face vectors fj=Ps-IP~ (N.B. fj ter- 
minates at Pj) appear in Fig. 3(b) as an anticlockwise 
succession of radiating vectors, called the 'face vector 
fan'. If the t~k0's corresponding to the real faces are 
called tj, then f~=tffj, where fi is the width of the 
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Fig. 2. Vectorial  r epresen ta t ion  of reflexion f rom the  reference 
plane : 

(a) Le f t -hand  deflection. (b) R i g h t - h a n d  deflection. 

The uni t  vectors  t o and  n o represen t  the  reference plane 
and  its no rma l  respect ively.  The  uni t  vectors  i and  d 
represen t  the direct ions of the  inc ident  and  di f f racted rays,  
- - i  and  - - d  the opposite directions.  

corresponding face; the unit  vectors tj are more 
suitable for use in the vector fan. The faces can also 
be represented as in Fig. 3(c) by a similar anti- 
clockwise succession of unit  vectors nj, representing 
the face normals and called the 'face-normal vector 
fan'. I t  is convenient to make all angular measure- 
ments from the normal to the reference plane. The 

(a) (b) 

vectors occur at  A ~ = A j + z e / 2 .  Although no and na 
c a n  coincide, the distinction must be preserved if 
the reference plane is chosen as a lattice plane and 
has no corresponding external face. The external angle 
at  Pj  is 6j. 

The orientation of the diffracting planes is most 
readily calculated as e, the angle (positive) in reciprocal 
space between the reciprocal lattice vector ah~0 and no. 
The angles AIj are particular values of e, corresponding 
to the planes (hkO)  of the contour. 

The angular orientations (reckoned from no) of 
i, d, - i ,  - d  for any hkO reflexion are: 

Ad 
A(- i )  
A(--d) 

Lef t -hand  R i g h t - h a n d  
deflect ion deflect ion 

e - n / 2  - 0 e + n / 2  + 0 
e - ~ /2  + 0 e + zt/2 - 0 
e + zl/2 - 0 e -  n / 2  + 0 
e + ~12 + 0 e -  ~12 - 0 

The grazing angles of incidence and emergence 
for face j are defined (Fig. 4(a)) as the angles between 

_i ~ - .  -i ~'-~'- 

7g- ~i: .t. 

?l-~;-  

{,,1 II,) 
Fig. 4. Lef t -hand  deflect ion:  

(a) Grazing angles of incidence and  emergence  for face j .  
(b) Angula r  segments  in which a vec tor  fan  is subdivided 
by  i, d, - - i  and  - - d ;  region not  shaded  is ' i l luminated '  by  
the X-rays .  
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Fig. 3. Vector ial  r epresen ta t ion  of the  con tour  of the  crys ta l  
cross-section (a l e f t -hand  deflect ion is assumed) :  

(a) Cross-section of the  crystal .  (b) Face  vec tor  fan. 
(c) Face  normal  vec to r  fan. (d) Angles defining vectors  
tj, nj,  i, d, and  nhk o. 

other face normals then occur at  fixed and known 
angles Aj from no (Fig. 3(d)), while the set of fj (or t¢) 

fj (or tj) and the vectors i and d, and written as 
~vj, ~j respectively. Values for (hkO) are: 

Lef t -hand  R i g h t - h a n d  
deflect ion deflect ion 

~vj ~z + A l - -  e + O A j - -  e + O 
cpy n + d j  -- e -- O A j - -  e - -  O 

Obviously only those faces are illuminated by the 
incident rays for which 

and similarly only those can emit diffracted rays for 
which 

0 <  ~ j<~r .  

These conditions are indicated by shading in 
Fig. 4 ( b ) ,  to give four distinct angular segments: 

(1) Face vectors fj, falling in the sector - i , - d ,  
are 'exposed' to both i and d rays; fj in this sector 
have both ~r-  y~¢ and ~ j -  ~r negative. 
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(2) Sector - d ,  i is a region of 'penumbra'  and 
ft in this have ~ - y J j  negative and ~ j - ~  positive. 

(3) Sector i, d is in shadow to both incident and 
diffracted rays; fj in this sector have both z - y ~ j  
and ~ -  ~ positive. 

(4) Sector d , - i  is a region of 'penumbra'  and 
f~ in this sector have ~-v/~  positive and ~ - ~  
negative. 

Throughout any practical problem the list of values 
of A~ is constant, and can be quickly converted to 
corresponding lists of F~'s and ~ ' s  as each new 
reflexion is treated. From these, short lists can be 
drawn up of the faces illuminated by i rays and 
emitting d rays. I t  is evident from the sequential 
numbering tha t  the faces in each short list will be 
contiguous (in a cyclic sense). 

Block mosaic and path len~,th 

If we now, according to t tendershot (1937), draw 
sets of i and d rays through the extremities of each 
of the faces, we produce (Fig. 5) a mosaic of parallelo- 
grams more than covering the whole crystal. Each 
mosaic block (av,q) is characterized by having all 
optical paths enter the crystal via face p and leave 
the crystal via face q. Each mosaic block contributes 
its own e.d.a.p, q to the total. Thus ~ = ~, ~.-'e.d.a.v, q, 

p q 
and the evaluation of each e.d.a.v,q entails a precise 
integration, which can be made exactly only when 
the path 1 of the X-rays inside each block is expressed 
in a linear form. In  an orthogonal system of axes, 
the path length can be expressed by 

l = a ( x p - x ) + b ( y p - y )  

where a and b are certain coefficients, Xp, yp are the 
coordinates of a corner of a section and x, y are the 
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Fig.  5. B l o c k  m o s a i c  of a c ross -sec t ion .  The  s h a d e d  a r e a  
i nd i ca t e s  a p p r o x i m a t e l y  the  s h a p e  of t he  e.d.a.'s. 

Table 1. Equivalent diffracting areas (e.d.a.) for the six principally contributing types of mosaic block 
F o r m u l a e  are  q u o t e d  for  l e f t - h a n d e d  ( +  20) de f l ec t ion  

Cond i t i ons  in faces  v e c t o r  fan  

Sec to r  

S y m b o l  

Fj 

ij 

$1"  

T y p e  of b l o c k  -- i, -- d -- d,  i i, d d,  -- i 

1 
alj  t j  #--:, 

tj 1 
aI+1, J t j+ 1 t d  

1 
aI+1,1 t j  t4+ 1 #-~ 

1 
a]+l, I t4+l t j  ~t-- ~ 

e.d.a. (cm 2) 

s i n ~ j s i n c p ,  { sin20 } 
s~n ~pj : s~nn ~oj L1 + sin YJI -- sin q~j 

sin ~j  sin y3;+x sin 20 

(sin ~pj -- sin Tj) (sin ~J+l -- sin ~J+l) 

sin 2 (pj sin YJf+~ 

sin ~j  -- sin ~0 t sin ~j 

sin2 YJJ+I sin 9t  
sin 9i+J -- sin Y~t+1 sin 6j 

C j "  a J + l ,  j t j +  1 t j  
1 sin 9 j  sin Y~J+I 

/~2 sin bj 

i sin ~p; sin ~0i+ 1 
C j "  aj, j+1 t j  tJ +I #2 sin ~j 
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coordinates of any point lying inside a block. The 
system of axes can be rotated or changed for con- 
venience. 

The most convenient system of axes, for strongly 
absorbing crystals, is that  which makes the path 
dependent on one variable only. In fact this corre- 
sponds to applying the constant-path method 
(Howells, 1950) and provides a very simple physical 
interpretation of each e.d.a.p, ~. 

When # is large only a few mosaic blocks, mainly 
on the irradiated side of the crystal, make any 
significant contribution. There are only a few distinct 
cases to consider. Simple tests suffice for selecting 
the formula appropriate to each mosaic block. 

They are trigonometric functions of v/j, ~j, 0 and 
of the corner angles, 5j, so the evaluation of z~ is 
thereby reduced to the evaluation and summing of 
a few (rarely more than six) relatively simple for- 
mulae. The formulae are listed in Table 1 and derived 
in the Appendix. 

Here we describe the notation and give a physical 
interpretation of the contributing e.d.a.'s. I t  should 

be noted that, because of the reversibility of ray paths, 
the e.d.a.'s for (hkO) are the same for right- and left- 
handed deflections. Thus all formulae have to be 
symmetrical with respect to the interchange of V/ 
and ~, due attention being paid to changes of sub- 
scripts and angular constants. In Table 1 they are 
quoted for left-hand (20 positive) deflections. Note 
that  hk0 entails a totally distinct mosaic, so that  in 
general 7:e(hkO) # Te(hkO). 

Constant-path method 
The constant-path method leads to a simple physical 
interpretation of the e.d.a, in each case. These physical 
pictures are given here in detail. 

(a) Frontal strip (Fj) (Fig. 6(a)) 

This lies in an area of type aj,j (cf. a3,3 in Fig. 5), 
i.e. i and d enter and leave v/a the same face j. The 
contours of #l run parallel to the face and rise 
uniformly as one enters the crystal. If the highest 
value of #l reached in the block makes exp (-/~l) 
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Fig. 6. Physica l  in te rpre ta t ions  of the e.d.a, and  condit ions in the  vec tor  fan:  (a) F ron ta l  strip (Fj). (b) Inse r t  (Ij). 
(c) Pre-side face ($1'). (d) Post-s ide face (Sj"). (e) F r o n t  corner  (Cj'). (f) Fa r  corner  (Cj"). 

A C 1 8 - - 4  
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negligible, one can regard the e.d.a, as a strip of com- 
pletely transparent crystal lying between the exposed face 
and the contour for which ttl = 1, the remainder of the 
block being regarded as opaque. I t  is actually equal 
to the area of the rectangle based on the/zl = 1 contour, 
not  the trapezium P~_~P~SR, but  the difference is 
usually small. We shall call this a frontal strip (F~), 
and the formula for an F-block is the only one to 
involve a dimension; the formula is expressed in 
terms of the length of face j (L~ = tefi) rather than the 
length R S  of the tel= 1 contour. The condition in the 
face vector fan for recognizing an e.d.a, of type a~,~ 
is tha t  tl falls in the sector - i ,  - d .  

(b) Insert (It) (Fig. 6(b)) 
This is a region wedged between two 2' strips 

which meet at  P~, the tel = 1 contour bridging the gap, 
i.e. it is of form a~+~,~ with both e.d.a.~,~ and 
e.d.a.i+~,i+~ contributing (cf. a4,~ in Fig. 5). I ts  e.d.a. 
is twice the area of the triangle so formed. The 
condition in the face vector fan is tha t  both tl and 
t~+~ fall in the sector - i ,  - d .  

(c) Pre-side face (S~) (Fig. 6(c)) 
This is an area abutt ing on an F~ strip, so tha t  the 

rays enter S~ before passing out via the F strip, 
i.e. i t  is of the form ay+,,~ when e.d.a.~,~ contributes 
(cf. as,a in Fig. 5). The t t l= l  contour reaches the 
surface in face j + l  and joins the contour in the 
2' strip, thus cutting off the corner at P~. The e.d.a. 
is twice the area of the triangle so formed. The 
condition in the faces vector fan for the arising of 
an S~ contribution is tha t  t~ falls in sector - i ,  - d  
and t~+~ falls in sector - d ,  i. 

contour cuts off corner Pj  and the e.d.a, is twice 
the area of the triangle so cut off. The condition in 
the faces vector fan is tha t  tj is in the sector d, - i  
and tj+~ in the sector - i ,  - d .  

(e), (f) Corners (C~ and C~') (Fig. 6(e), (f)) 
These are regions occurring alone, i.e. the tel= 1 

contour meets adjacent crystal faces, and cuts off 
the corner at  Pj. Again the e.d.a.'s are twice the 
area of the triangles cut off. However, two cases arise: 

For a left-hand deflection C~ is of form a~+l,j when 
neither e.d.a.j,~ nor e.d.a.~+l,j+~ contribute. In  this 
case the optical pa th  must  lie wholly inside the 
e.d.a, triangle: it is a corner on the side of the crystal 
nearest the radiation. We shall call it a near corner. 
The corresponding condition in the face vector fan 
is tha t  no tj fall in the sector - i ,  - d .  

C~' occurs at  the back of the crystal (far corner) 
and its optical path  inside the crystal can lie wholly 
or part ly  outside the e.d.a, triangle. For a left-hand 
deflection this is of the form aj,j+~ with neither 
e.d.a.j, j nor e.d.a.j+l, ~+1 contributing (cf. as, 1 in Fig. 5). 
The face vector fan has no tj in the sector i, d. 

The formulae of Table 1 give the e.d.a, with an 
approximation which improves with increase in the 
absorption of the crystal. In order to assess the 
accuracy of the given formulae, we have compared 
the values obtained by the exact formulae and those 
obtained by the formulae of Table 1. 

The accuracy is found to be in agreement with the 
assertions of Grdenid (1952) and Hendershot (1937). 
The approximate formulae are applicable when 
D =  ttD, i.e. the mean diameter of the crystal mul- 
tiplied by /t is greater than 4 and the values of Fj 
and q~3" are not small. 

(d) Post-side face (S~') (Fig. 6(d)) 

This is an area occurring at  the other end of an 
F strip, so tha t  the rays enter the Fj+I strip and exit 
via face j (i.e. it is of the form aj+l,j when e.d.a.j+l,~+l 
contributes (cf. a3,2 in Fig. 5). Again the tel = 1 

Practical  procedure  

Some examples of section of crystals are drawn in 
Fig. 7. The very simple rules for recognizing which 
type of e.d.a.v,q contribute to ~e can easily be for- 

Table 2. Choice of e.d.a.'s contributing to ~ for cross-section of Fig. 7(a) 

D e p e n d e n t  on  c r o s s - s e c t i o n  

Lj ~j & 3/ 

I L I 60 0 90 
2 L 2 60 60 150 
3 L 3 60 120 210 
4 L 4 60 180 270 
5 L s 60 240 330 
6 L 6 60 300 390 
1 - -  - -  0 90 

D e p e n d e n t  on c r o s s - s e c t i o n  
a n d  r e f l e x i o n  

( A i = 2 0 0 ° ;  A a = 3 4 0  °) 

pos. pos. 

--250 II0 - - I i0  250 - -  

- -  190 170 - - 5 0  310 - -  

- -  130 230 I0 I0 + 
--  70 290 70 70 + 
- -  10 350 130 130 + 

55 55 190 190 - -  
--250 II0 - - i i0  250 

Qj 

+ 
+ 
+ 

Rj+l 

+ 
+ 
+ 
n 

A n g l e s  a r e  g i v e n  in d e g r e e s  

Lj = ~/j (~ in cm-', fj in em) 
R i is t h e  s ign  of ~j  - ~ ;  _Rj+ 1 is t h e  s ign  of ~ j + I -  
Qj is t h e  s ign  of z - y J l ;  Q1+1 is t h e  s ign  of ~ - t P J + I  

QJ+a 

+ 
+ 
+ 
m 

e.d.a. 

2' I + 11 
2' 2 
0 
0 
0 

• "s +Is 
0 
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t2/ /d ~ i  \ t '  

,d 

-d i 
(b) 

i S ' ' f ~  " J T ~ f " ~  "'" ~ _ ~ / / d  
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Fig. 7. Some cross-sections and  condit ions in the vector  fan 
de termining  the choice of the  proper formulae. 

Table 3. C o m b i n a t i o n  o f  s i g n s  o f  

~ Y -  ~ ,  ~ - -  v 2 1 ,  ~ t + ~ -  ~ ,  ~ - -  vdl+l 

a n d  c o r r e s p o n d i n g  e .d .a .  ( l e f t - h a n d e d  d e f l e c t i o n )  

~9.}- ~ : r [ -  ~ J j  (~Oj+ 1 - -  ~ g -  tpj+l 

Signs 

Rj  Qy Ry+I Qy+[ e.d.a. 

+ + -- -- 0 
+ + + -- 0 
+ + - + o 
- + - + o 

- + + + o 
- + + - C j "  

- + - - S j "  

+ + + + 0 
- - + + F j  

- -  - -  - -  + 0 

- - + - ~ j + s j "  
+ -- + -- 0 
+ - -- - 0 
+ - - + C j "  

+ -- + + 0 

. . . .  P ~ + h  

mulated. If reference is made to Fig. 7(a), the list of 
angles of Table 2 can be prepared. The choice of 
the formulae is based only on the combination of 
signs of ~ - y j j  and ~ j - ~ ,  i .e .  on the position of 
tj and tj+~ in the vector fan. The combination of signs 
and corresponding formulae for the cross-sections of 
Fig. 7 are quoted in the figure itself. A complete list 
of possible sign combinations and the corresponding 
formulae is given in Table 3. The procedure of 
Table 4 can be followed on a computer. 

Table 4. P o s s i b l e  p r o c e d u r e  o n  a c o m p u t e r  

f o r  c a l c u l a t i o n  o f  "ce 

(1) Set list of Lj(L1 ,  L 2 . . . . .  Ln)  and 6j(61, 62 . . . . .  6n) 
(2) Set list of z] I (/Jl, d~. . . . . .  /-in, A 1) 
(3) Set list of zJ / (A( ,  z]9', . . . .  t in ' ,  Z]l') 
(4) Choose hkO reflexion, i.e. calculate e, zli, zid 
(5) Calculate ~01 and transform to ~I positive; list ~.j 
(6) Calculate Fj and transform to yJj positive; list yJj 
(7) Calculate signs P~.¢ and  QI of ~ j - ~  and ~ -~0 i ;  list Rj. Qj 
(8) Combine Rj, Qj, Ri+1, Q1+I 
(9) Analyse combinat ion of signs following the scheme: 

-~ Rj, 0~, R~.l, Oj+l I I 
j +  l - - > j  i 

step j cyclically [ 

I 
. . . . . .  Eva lua te  e.d.a. [ 

i 
(10) Go to (4) 

E x t e n s i o n  o f  t h e  procedure  to t h r e e - d i m e n s i o n a l  
crys ta ls  

The procedure described for a cross-section can be 
extended to calculate Te of the whole crystal. If some 
approximations are made, the procedure can be 
applied also to h k l  reflexions taken with the equi- 
inclination technique. 

The extention to three-dimensional crystals starts 
from a particular integration procedure of the e . d . a . ' s .  

In this integration method it is assumed that  the 
reference system of axes is rotated for each reflexion 
in such a way as to have the + x axis coincident with 
- i  and the y axis normal to x and z; z axis is the 
rotation axis as defined in Fig. 1. Each e .d .a ,  is 
related to the projection of each side (Fig. 8) on the 
plane normal to the incident rays. The y axis 
then represents the line of constant intensity of 
'illumination'. Whatever the inclination of the crystal 
face might be, the energy which reaches the faces 
must be measured along a line of constant intensity, 
parallel to the y axis. By analogy the intensity of 
'illumination' in three dimensions is proportional to 
the projection of the crystal face on the plane normal 
to the incident rays. 

Therefore the formulae of Table 1 can be easily 
extended to three-dimensional crystals. When the 
crystal has constant cross-section normal to the 
rotation axis, the transmission factor can be cal- 
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i -  ~ d  x,  

~ P ;  T 

/e, / / ' / :  j 

p ~ y' 

y, 

/y 

t3 

- i  d 
t4 

\, 
Fig. 8. Intensity of X-rays arriving at each side fn referred to 

lines - fn  sin ~pj" of constant intensity of 'illumination'. 

culated by multiplying the formulae obtained for the 
cross-section by 5(f, the height of the crystal in cm. 

A crystal of varying cross-section is easily dealt 
with for each of its cross-sectional slices with the same 
shape. The formulae of Table 1 can then be applied 
to a slice if one replaces Lj, by  

1 1 1 H  

[P[ - s i n  yJ-------j # 2 (Lj+L}) 

where L j =  #fi and L'=/~f} (fi and f} are the moduli 
of two parallel corresponding vectors limiting the 
slice of height ~=H//~; for example in Fig. 9 f~ 
and fl, f~ and f~ and so on). The terms not containing 
Lj must be multiplied by ~ .  P is a vector product, 
the projection of a crystal face or part  of it on the 
plane normal to the incident rays. The procedure 
described for a cross-section is followed for each slice 
with a different outline. 

For the equi-inchnation technique the diffracting 
volume can be assumed to be the same as for the 
corresponding equatorial reflexion with absorption 
coefficient ~ secv. In  order to obtain the projection 
on the plane normal to the incident rays we form the 

Fig. 9. Slice of a crystal referred to x, y, z, coordinates axes. 
x', y', z' coordinate axes for equi-inclination setting are also 
drawn; (y', z') plane is normal to the incident ray i. 

matrix [p ]=  [0][N][ej] and the matrix [p ' ]-[0][N][t~]  
where 

[e~] = |cos , [U] = , 
LCOS 

E l--l o , 

[0] = 0 1 0 , 
- sin v 0 cos 

and cos ~x, cos/~, cos y are direction cosines of the 
vector E~ (Fig. 9), i.e,. the crystal edge joining fj to f~ 
at the corner dj. The primitive system of axes (right- 
handed) can be considered as having y parallel to 
fj and t}, z parallel to the rotation axis and x normal 
to both. In the same system f~ and f~ have direction 
cosines cos fl = 1, cos ~ = cos 7 = 0 ; Ej--  #g~ where d~j 
in cm is the length of the crystal edge, ~0~ and ~j 
are the same as for the corresponding equatorial 
reflexion when Y2 is substi tuted for 0, v is the equi- 
inclination angle. The projection area becomes 

Lj + L} 
I P [ -  ~ V(P~+P~2)'E~I/(P~+P~)'sin(w'-°~) • 

p' and p are elements of the one-column matrices 
[p'] and [p], w' = t a n  -1 p~/p.~ and co=tan  -1 p3/p~. 

The factor (1//~) (see s v / - s i n  ~0~)IP] is substi tuted 
for Lj in those terms of Table 1 containing it. The 
terms of Table 1 not containing Lj are multiplied by 

(1//~) sec 2 vE~]/(p~ +p~).sin (~o'-  o~). 
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C o n c l u s i o n  

The formulae given are applicable satisfactorily when 
the values of Lj exceed 4 and when the values of 
y~ and ~t are not small. The procedure outlined is 
particularly suitable for application to electronic 
computers in view of the simple choices and the 
matrices on which it is based. For crystals having 
low values of D, the logical foundations of the problem 
are still valid, but the contributions from the internal 
areas need to be calculated. The present formulae 
emphasize the contribution of the surface part of the 
crystal to the diffracting volume. 

A P P E N D I X  

The formulae of Table 1 are derived as follows" 

(a) Frontal strip (F~) (Fig. 10(a)) 

I' - . . . . . . . . . . .  ~ d 

q ! ~ . 

/ , ' f ~ . ,  . . . .  =_y_~ . . . . . . . .  . f , \  

(o) 

Fig. 10. (a) Frontal strip (Ff). 

/ 1 

= 1 -  

For #~xy0 large, i.e. #(PAT + TPj-1)  large, 

1 ( 1 ) 
e . e . a .  

1 cot (~j-- ~) + cot ( ~ -  ~j) 

_ _ _ _  [ sin ( ~ , -  ~,) ] 
_ 1 sin F f .  sin cpj #fj _ sin F ~ -  ~ n  ~ 

#~ sin y ~ -  sin ~ 

= _1 siny~ . sinq~[ sin20 ] 
#~ sin Y~t- ~ ~ Lj + sin y ~ -  sin 9~ 

:For a contour at a depth t below face j ,  l=to¢ and 

e.d.a. = f l  -~l 

So if tel= 1, this becomes 

= L~. t (1 - t / yo)  
= L' t  

where L' is the length of the # l =  1 contour, i.e. 

e.d.a. = area of rectangle on L' between the surface 
and the # l =  1 contour. 

(b) Insert (Ij) (Fig. 10(b)) 

% 
(b) ~" 

Fig.  lO. (b) Inse r t  (I~). 

S e.d.a. = (y/h). L ' .  exp ( - #ly/h) dy 
0 

= - - :  exp ( -  #ly/h) .  1 + . 

If the triangular region continues interrupted to 
such a depth Y as to make exp ( - # l Y / h )  negligible, 
this beeomes : 

L'h/#212 , 

i.e. twice the area of the triangle cut off by the # l =  1 
contour or, like the frontal strip, is 

(length of the tel= 1 contour) x (maximum depth of 
this contour below the surface). 

_- I 
sin 20 

(pj+l - sin ~oj+l/ksin q)j-- sin @j 

i sin (pj. sin y~:r+l, sin 20 
#2 (sin F j -  sin ~j) (sin Fj+I - sin ~j+l) 

(c) Pre-side face (S~) (Fig. 10(c)) 

1 

f, 

. . . . . .  £' ~c~tour of path length 1 

\ 
(c) 

Fig. 10. (c) Pro-side face (Sj'). 
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i 
F 

e.d.a. = (y/h) .  L ' .  exp ( - tdy /h)  dy  
o 

L '  h2 i 
= X exp (--/aly/h)..--2~o_ 1 + I 

Ir 
= L'h/#212 as for 1I when exp ( - / u l Y / h )  tends 

to zero at the upper limit of integration; i.e. 

e.d.a. = twice the area of the triangle cut off by 
the #l - -  1 contour. 

, 1 /sin(p,~ ( sin(p, ) 
Sj = ~-~ \ ~ ]  \sin (Pl- sin ~1 ( - sin ~1+1) 

= 1 (  sine(p, ) {sinyJl+l ~ 
#2 sin ~01-- sin (pl \ sin 5t ] " 

(d) Post-side face (S / )  (Fig. 10(d)) 

i \ 

_-:  .!" • . 

contour of 

Fig. 10. (d) Post-side face (S/').  

I" 
e.d.a. = (yL ' /h)  exp ( - # l y / h ) d y  

o 

= L'h/#21 ~ as for S~ when the upper limit of 
/uly/h is large; i.e. 

e.d.a. = twice the area of the triangle cut off by 
the lul = 1 contour. 

1 ( - -s in  ~0I+1/ ( .  --sin ~0./+1 / s in  (Pl S~ '=  
~--2\ s-~n~-~ ] \s,nvl+l-sm~k,t+l / 

_ 1 -- #---~ \ (sin sin2 v2J+' / (sin (pj 
(pj+t - sin ~oj+t/\sin dj/ " 

(~) Front-corner  (C~) (Fig. 10(e)) 

As before, 

e.d.a. = L'h/#212 

= twice the area of the triangle cut off by the 
#tl = 1 contour. 

1 (sin (p.~ ( - s i n  ~01+1' / 
C:} = ~-~ \sin 5i] _ sin d-~ / sin 5i 

1 sin (pt. sin ~01+t 
#2 sin 5j 

(e) 

Fig. 10. (e) Front-corner  (CI'). 

( f )  Far .corner  (C~') (Fig. 10(f)) 

\, 

" ' - .  L' "\ 

i \ 

\ 

~ d 

~ d  

\ \ 

Fig. 10. (f)  Far-corner  (Cj"). 
As before, 

e.d.a. = L'h//u212 

= twice the area cut off by the /A= 1 contour. 

1 [sin~j+l~ ( - s inyJ l  t 
C / =  ~-~ \ sin 61 ] \ - ~ m ~ - j  / sin 51 

1 sin YJI. sin (pt+1 
#2 sin 5t 
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College, London, for several suggestions regarding the 
presentation of the paper. We wish to thank also the 
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The Crystal Structure of Longifolene Hydrochloride 

BY A. F. CESUR* AND D. F. GRANT 

Viriamu Jones Laboratory, University College, Cardiff, Wales 

(Received 16 January 1964) 

Longifolene hydrochloride crystallizes in the space group P212121 with a=8.505, b=9-760 and 
c = 16-674 A. The structure, originally solved in projection by the isomorphous replacement method, 
has been confirmed by three-dimensional methods. Coordinates have been given to the 25 hydrogen 
atoms in the molecule, and the structure has been refined by least-squares methods. :New values 
for the bond lengths and bond angles are given and the strain in the molecule is discussed. 

1. Introduction 

Longifolene, C15H24 (Fig. l(b)), is a sesquiterpene 
whose molecular consti tut ion was v i r tua l ly  unknown 
(Simonsen & Barton,  1952) unt i l  it  was determined 
by  Moffett & Rogers (1953) (Moffett, 1954) from the 
X-ray  s tudy in projection of the crystal  structure 
of longifolene hydrochloride (Fig. l(a)) and confirmed 
by the chemical evidence of Naffa & Ourisson (1953) 
(Simonsen & Ross, 1957). As a result  of considerable 
overlap in the projections of the structure, some 
aspects of this X-ray  work were not satisfactory 
(see below), and Bar ton & Mayo (1957) suggested 
tha t  fur ther  chemical evidence was needed to confirm 
the proposed structure. More recently,  longifolene has 
been synthesized by  Corey, 0hno,  Vatakechery & 
Mitra (1961), who state tha t  the chemical facts alone 
did not consti tute a proof of the molecular structure. 

In  this  paper, a complete three-dimensional analysis  
of the crystal  structure of longifolene hydrochloride 
is described, removing the possible doubts about  the 
previous X-ray  work and confirming in detail  the 
structure previously found. As only a brief account 
of the two-dimensional  work has been given, it is 
reviewed in the next  paragraph.  

* Present address" Fen Fakiiltesi, Ankara, Turkey. 

CI 
(a) (b) 

Fig. I. (a) Longifolene hydrochloride. (b) Longifolene. 

2. The previous work by Moffett & Rogers 

The crystals of longifolene hydrochloride and hydro- 
bromide were found to be isomorphous in the space 
group P212121. The coordinates of the chlorine and  
bromine atoms were found from the (100) and  (010) 
Pat terson projections and the method of isomorphous 
replacement  was used to determine the signs of 130 
out of the 154 observed 0kl reflexions and the signs 
of 104 out of 126 observed hO1 reflexions. The electron 
densi ty maps  for these two projections were calculated 
for the hydrochloride. I t  was not possible to fit  any  
of the then  proposed chemical models to these maps. 

Moffett & Rogers proceeded without  making  any  
assumptions about  the chemical structure and,  


